lunes, 30 de abril de 2018

domingo, 29 de abril de 2018

¡Enhorabuena!

Hacemos nuestras las palabras del tribunal:

Asimismo el tribunal desea felicitar:
A todos los concursantes, por su impecable comportamiento y por el sano espíritu matemático que han sabido mostrar durante la prueba.

Y añadimos una enhorabuena especial a vuestros compañeros Beatriz, Paula y Samuel.


¡Enhorabuena por vuestro esfuerzo chicos!

miércoles, 25 de abril de 2018

El mundillo matemático (II): los grandes

¿Quiénes son los más grandes matemáticos de la Historia? Voy a reducirlo mucho:


Euclides (s. III a. de C.): autor del libro "Elementos", una recopilación que fue "la biblia matemática" durante muchos siglos.

Newton (s. XVII): el Dios absoluto de la Ciencia. Su "Philosophiæ naturalis principia mathematica" es la obra científica más importante de la Historia: establece los cimientos de la Física y revoluciona las Matemáticas con el descubrimiento del Cálculo Infinitesimal (otro gran matemático, Leibniz, lo descubrió de forma independiente en la misma época y la polémica fue terrorífica).

Euler (s. XVIII): quedarse ciego no le impidió ser el matemático más prolífico de la historia. Trabajó en multitud de campos siendo pionero en muchos de ellos.

Gauss (s. XIX): conocido como el "Príncipe de las Matemáticas". ¿Os acordáis de él? ¿Cuánto vale 
1+2+3+4+5+...+997+998+999+1000?

¿Y un "poco" más modernos? ¿En los últimos tiempos? Vamos a dejarlo también en cuatro:


Andrew Wiles: demostró en 1993 el Último Teorema de Fermat, que había resistido más de tres siglos a los mejores matemáticos del mundo.

Terence Tao: un ex-niño prodigio ya en la cuarentena. Especialista en Teoría de números, resuelve como si nada problemas inaccesibles para el resto de los mortales. Si hacéis clic en la imagen podéis visitar su blog.


Grigori Perelman: muy famoso, por haber demostrado la Conjetura de Poincaré... y por ser un "bicho raro" que vive apartado y renunció a varios premios (y a sus correspondientes millones de dólares).

Maryam Mirzajani: espero que no necesite presentación en este blog. Primera mujer en ganar la Medalla Fields.


¿Y alguno de nuestra tierra? Desgraciadamente España no ha destacado en la historia de la Humanidad por el talento de sus científicos. Entre las honrosas excepciones se encuentra un paisano nuestro, el logroñés:

Julio Rey Pastor

martes, 24 de abril de 2018

2º de ESO: examen de Pitágoras y semejanza

En los siguientes enlaces os cuelgo el examen y la solución:



Quiero que esta tarde lo hagáis en casa. Mañana los recogeré a primera hora.

viernes, 20 de abril de 2018

1º de ESO: examen de álgebra

En los siguientes enlaces os cuelgo el examen y la solución:



Como siempre, es importante que descarguéis el examen, lo hagáis y consultéis después la solución.

martes, 17 de abril de 2018

Construyendo mi ataúd

 Corpus hypercubus, de Salvador Dalí

Mido 1'94 y, cuando muera (¡lo que tengo que hacer para captar vuestra atención!), me gustaría que mi ataúd tuviese forma hipercúbica de 1 centímetro de arista. ¿En qué dimensión empieza a ser eso posible?

Primero vamos a responder a tres preguntas (los de 2º ya las sabéis; los de 1º las entenderéis dentro de poco, cuando veamos el Teorema de Pitágoras):


1) ¿Cuánto mide el segmento más largo que puedo pintar encima de un segmento de 1 centímetro?


La respuesta es fácil, como mucho, encima de ése, podré pintar otro segmento que mida 1 centímetro.


2) ¿Cuánto mide el segmento más largo que puedo pintar en un papelito cuadrado de 1 centímetro de lado?


Claramente el segmento más largo que podemos pintar es la diagonal del cuadrado. Llamamos a Pitágoras:


Es decir, como mucho podemos pintar un segmento de longitud raíz de 2 = 1'4142... centímetros.


3) ¿Cuánto mide la varilla más larga que puedo meter dentro de un cubo de 1 centímetro de arista?


Es muy parecido al caso anterior: lo más largo de un cubo es su diagonal, y podemos calcular su longitud aplicando Pitágoras (notad que las diagonales de las caras, que son cuadrados, miden raíz de 2):


Es decir, la varilla más larga que cabe mide raíz de 3 = 1'732...


Conclusiones:

- en un segmento de 1 cm (dejadme rebautizarlo: "hipercubo de dimensión 1" con "arista" 1 cm), lo más grande que "cabe dentro" puede medir 1 cm,

- en un cuadrado de 1 cm de lado ("hipercubo de dimensión 2" con "arista" 1 cm), lo más grande que "cabe dentro" (en la diagonal) puede medir raíz de 2 = 1'4142... cm,

- en un cubo de 1 cm de arista ("hipercubo de dimensión 3" con arista 1 cm), lo más grande que "cabe dentro" (en la diagonal) puede medir raíz de 3 = 1'732... cm.

Efectivamente, esto sigue, y aunque hacer dibujos es (casi) imposible, las cuentas salen igual de fáciles:

- en un hipercubo de dimensión 4 con arista 1 cm, lo más grande que "cabe dentro" (en la diagonal) puede medir raíz de 4 = 2 cm,

- en un hipercubo de dimensión 5 con arista 1 cm, lo más grande que "cabe dentro" (en la diagonal) puede medir raíz de 5 = 2'236... cm,

- en general, en un hipercubo de dimensión n con arista 1 cm, lo más grande que "cabe dentro" (en la diagonal) puede medir raíz de n cm.

Responded ahora: ¿de qué dimensión tenéis que construir un "hiperataúd" de 1 cm de arista para que quepa un profesor de matemáticas de 194 cm?


Nota final: he dicho antes que los dibujos son casi imposibles. De igual manera que en las fotos o en los cuadros representamos en 2 dimensiones (utilizando la perspectiva) la realidad de 3 dimensiones (fijaos también en cómo dibujamos un cubo), en 3 dimensiones pueden hacerse representaciones del hipercubo de 4 dimensiones. Son ejemplos el cuadro de Dalí del principio o algunos monumentos (haced clic en las imágenes para saber algo más de ellos):

Monumento de la Constitución, en Madrid

Arco de la Defensa, en París

"Dibujo" de un hipercubo 4D

domingo, 8 de abril de 2018

Mapamundi

Si nos piden que pensemos en un mapa de nuestro planeta, a la mayoría nos viene algo así a la cabeza:

Mapamundi de Mercator

Y si a la vista del mismo nos preguntaran, por ejemplo, ¿qué es más grande, Groenlandia o África?, tendríamos que pensarnos la respuesta... aunque en realidad no hay mucho que pensar:

- Superficie de Groenlandia = 2'2 millones de km.

- Superficie de África = 30'4 millones de km.

Sí, África es unas 14 veces mayor que Groenlandia. ¡¿Qué está pasando aquí?!

Naturalmente todo tiene una explicación (¡matemática!) y es la siguiente:

No es posible representar, de forma semejante, la superficie de una esfera (y la Tierra lo es) en un plano. Es decir, podemos hacer "una especie de boceto", pero siempre habrá alguna distorsión.

El mapamundi más habitual (el de arriba) se basa en la proyección cartográfica de Mercator, que tiene la pega de que aumenta el tamaño de las regiones más cercanas a los polos.

Hay muchas otras opciones aunque todas tienen sus pegas. Por ejemplo, los dos siguientes respetan mejor los tamaños de las regiones terrestres (¿cómo veis ahora lo de África y Groenlandia?), pero el primero es un lío para las distancias por mar y en el segundo es muy difícil orientarse:



Os enlazo dos artículos sobre este tema y otras curiosidades: