Vamos a viajar al siglo V a.C., a la antigua Grecia. En ella existía un grupo de matemáticos/filósofos (entonces venían a ser lo mismo) que eran conocidos como los pitagóricos (no hace falta explicar de quién eran seguidores). Su principal creencia era que todo el Universo podía ser explicado con números y que todos los números podían formarse dividiendo el 1 en partes iguales (ellos decían que todos los números eran conmensurables porque podían compararse con el 1). Esencialmente la idea es el juego de palitos que vimos el otro día. Por cierto, la mayoría de vosotros pensáis lo mismo:
Traducido a nuestras matemáticas actuales, como los de segundo ya sabéis y los de primero pronto decubriréis, responder que sí en la encuesta, equivale a pensar que cualquier número se puede poner en forma de fracción. En algunos casos eso es cierto:
Los griegos pensaban que sí, hasta que uno de ellos, Hipaso de Metaponto, aplicó el Teorema de Pitágoras a un triángulo como el de la derecha y se preguntó, ¿cuál será la fracción que vale raíz cuadrada de 2?
Como Hipaso manejaba perfectamente el Teorema Fundamental de la Aritmética (¡sí, el de los números primos haciendo de ladrillos!), no le costó mucho deducir, para su sorpresa, que no había ninguna fracción cuyo valor fuese raíz de 2. No es difícil y os lo podría intentar explicar, pero os saldría demasiado humo por las orejas, así que lo dejo en las manos de vuestro futuro profesor de 3º o 4º de ESO (para los curiosos: es la primera de las dos demostraciones a las que lleva el siguiente enlace):
Este descubrimiento provocó un verdadero sunami en la escuela pitagórica. Cuenta la leyenda que sus compañeros lo arrojaron al mar por revelar fuera de la secta esta catástrofe, aunque en realidad parece ser que lo que hicieron fue organizar un simulacro de funeral, con tumba incluida, que simbolizaba que para ellos Hipaso pasaba a estar muerto.
En la actualidad sabemos que sólo los números decimales exactos (que tienen un número finito de cifras decimales) y los números decimales periódicos (aquellos en los que hay un bloque que se repite continuamente) se pueden escribir en forma de fracción (los llamamos números racionales). Los que tienen infinitas cifras decimales sin periodo son los números irracionales (¡el nombre lo dice todo!) y raíz de 2 tiene el honor de haber sido el primero que descubrimos gracias a Hipaso.
Vamos a responder a algunas preguntas que pueden venirnos a la cabeza:
¿Cuántas cifras decimales tiene raíz de 2? Infinitas porque es irracional. Además no hay ningún bloque que se repita periódicamente.
¿Cómo podemos conocer sus cifras decimales? En este caso sólo hay una manera, calculándolas. Es una tarea muy pesada que se hace con ordenadores. En el futuro os explicaré algunas técnicas. Aquí va un enlace a una página web en la que podéis ver el primer millón de cifras de raíz de 2 (para la calculadora: 1'414213562...)
¿Por qué se calculan entonces tantas cifras decimales? Es una especie de competición "deportiva" entre matemáticos e informáticos para demostrar la potencia de sus técnicas y sus superordenadores.
Vamos, que hay por ahí matemáticos perdiendo el tiempo. No del todo. Las técnicas que se desarrollan para calcular los decimales pueden tener aplicaciones prácticas en otros campos.
Una última pregunta: entonces, ¿los números irracionales son aquellos de los que no sabemos cómo van sus cifras decimales? No. Son aquellos que tienen infinitas y no hay bloques (periodos) que se repiten, pero sí que pueden seguir patrones. Por ejemplo, son números irracionales:
0'12345678910111213141516... ¿cómo sigue?
0'010010001000010000010000001... ¿cómo sigue?
Otra, otra: ¿cuántos números racionales hay? ¿e irracionales? Hay infinitos de los dos tipos... pero... y quien quiera entender esto tendrá que ir a la Universidad a estudiar matemáticas... ¡¡hay más números irracionales que racionales!!
¡La última de verdad! Y aparte de los racionales y los irracionales, ¿hay más números?
Haylos (¿a que quedaría bonito como póster en vuestra habitación?):
En la actualidad sabemos que sólo los números decimales exactos (que tienen un número finito de cifras decimales) y los números decimales periódicos (aquellos en los que hay un bloque que se repite continuamente) se pueden escribir en forma de fracción (los llamamos números racionales). Los que tienen infinitas cifras decimales sin periodo son los números irracionales (¡el nombre lo dice todo!) y raíz de 2 tiene el honor de haber sido el primero que descubrimos gracias a Hipaso.
Vamos a responder a algunas preguntas que pueden venirnos a la cabeza:
¿Cuántas cifras decimales tiene raíz de 2? Infinitas porque es irracional. Además no hay ningún bloque que se repita periódicamente.
¿Cómo podemos conocer sus cifras decimales? En este caso sólo hay una manera, calculándolas. Es una tarea muy pesada que se hace con ordenadores. En el futuro os explicaré algunas técnicas. Aquí va un enlace a una página web en la que podéis ver el primer millón de cifras de raíz de 2 (para la calculadora: 1'414213562...)
¿Sirve para algo calcular tantas cifras decimales? Para nada. En cualquier situación real en la que se necesite hacer cálculos con raíz de 2 (construir una casa, lanzar un satélite, fabricar un coche...), con conocer unas pocas cifras decimales sobra.
¿Por qué se calculan entonces tantas cifras decimales? Es una especie de competición "deportiva" entre matemáticos e informáticos para demostrar la potencia de sus técnicas y sus superordenadores.
Vamos, que hay por ahí matemáticos perdiendo el tiempo. No del todo. Las técnicas que se desarrollan para calcular los decimales pueden tener aplicaciones prácticas en otros campos.
Una última pregunta: entonces, ¿los números irracionales son aquellos de los que no sabemos cómo van sus cifras decimales? No. Son aquellos que tienen infinitas y no hay bloques (periodos) que se repiten, pero sí que pueden seguir patrones. Por ejemplo, son números irracionales:
0'12345678910111213141516... ¿cómo sigue?
0'010010001000010000010000001... ¿cómo sigue?
¡La última de verdad! Y aparte de los racionales y los irracionales, ¿hay más números?
Haylos (¿a que quedaría bonito como póster en vuestra habitación?):
Hola Daviv soy Fernando de 2D
ResponderEliminarLa respuesta a el reto de "Carl Friedrich Gauss", es 8515.Porque si multiplicamos 131x130 y este resultado lo dividimos entre 2 nos da 8515.